226 research outputs found

    Reconstruction of complete interval tournaments

    Get PDF
    Let a,ba, b and nn be nonnegative integers (b≥a, b>0, n≥1)(b \geq a, \ b > 0, \ n \geq 1), Gn(a,b)\mathcal{G}_n(a,b) be a multigraph on nn vertices in which any pair of vertices is connected with at least aa and at most bb edges and \textbf{v =} (v1,v2,...,vn)(v_1, v_2, ..., v_n) be a vector containing nn nonnegative integers. We give a necessary and sufficient condition for the existence of such orientation of the edges of Gn(a,b)\mathcal{G}_n(a,b), that the resulted out-degree vector equals to \textbf{v}. We describe a reconstruction algorithm. In worst case checking of \textbf{v} requires Θ(n)\Theta(n) time and the reconstruction algorithm works in O(bn3)O(bn^3) time. Theorems of H. G. Landau (1953) and J. W. Moon (1963) on the score sequences of tournaments are special cases b=a=1b = a = 1 resp. b=a≥1b = a \geq 1 of our result

    Testing of random matrices

    Get PDF
    Let nn be a positive integer and X=[xij]1≤i,j≤nX = [x_{ij}]_{1 \leq i, j \leq n} be an n×nn \times n\linebreak \noindent sized matrix of independent random variables having joint uniform distribution \hbox{Pr} {x_{ij} = k \hbox{for} 1 \leq k \leq n} = \frac{1}{n} \quad (1 \leq i, j \leq n) \koz. A realization M=[mij]\mathcal{M} = [m_{ij}] of XX is called \textit{good}, if its each row and each column contains a permutation of the numbers 1,2,...,n1, 2,..., n. We present and analyse four typical algorithms which decide whether a given realization is good

    Leader election in synchronous networks

    Get PDF
    Worst, best and average number of messages and running time of leader election algorithms of different distributed systems are analyzed. Among others the known characterizations of the expected number of messages for LCR algorithm and of the worst number of messages of Hirschberg-Sinclair algorithm are improve

    Degree sequences of multigraphs

    Get PDF

    Construction of infinite de Bruijn arrays

    Get PDF
    AbstractWe construct a periodic array containing every k-ary m × n array as a subarray exactly once. Using the algorithm SUPER (which for k⩾3 generates an infinite k-ary sequence whose beginning parts of length km, m = 1,2,..., are de Bruijn sequences) we also construct infinite km × ∞ k-ary arrays in which each beginning part of size km × kmn − m, n = 1,2,..., as a periodic array, contains every k-ary m × n array exactly once

    Reconstruction of score sets

    Get PDF
    The score set of a tournament is defined as the set of its different outdegrees. In 1978 Reid [15] published the conjecture that for any set of nonnegative integers D there exists a tournament T whose degree set is D. Reid proved the conjecture for tournaments containing n = 1, 2, and 3 vertices. In 1986 Hager [4] published a constructive proof of the conjecture for n = 4 and 5 vertices. In 1989 Yao [18] presented an arithmetical proof of the conjecture, but general polynomial construction algorithm is not known. In [6] we described polynomial time algorithms which reconstruct the score sets containing only elements less than 7. In [5] we improved this bound to 9
    • …
    corecore